This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of vertices of a graph. (Contributed by AV, 9-Jan-2020) (Revised by AV, 21-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vtxval | |- ( Vtx ` G ) = if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( g = G -> ( g e. ( _V X. _V ) <-> G e. ( _V X. _V ) ) ) |
|
| 2 | fveq2 | |- ( g = G -> ( 1st ` g ) = ( 1st ` G ) ) |
|
| 3 | fveq2 | |- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
|
| 4 | 1 2 3 | ifbieq12d | |- ( g = G -> if ( g e. ( _V X. _V ) , ( 1st ` g ) , ( Base ` g ) ) = if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) ) |
| 5 | df-vtx | |- Vtx = ( g e. _V |-> if ( g e. ( _V X. _V ) , ( 1st ` g ) , ( Base ` g ) ) ) |
|
| 6 | fvex | |- ( 1st ` G ) e. _V |
|
| 7 | fvex | |- ( Base ` G ) e. _V |
|
| 8 | 6 7 | ifex | |- if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) e. _V |
| 9 | 4 5 8 | fvmpt | |- ( G e. _V -> ( Vtx ` G ) = if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) ) |
| 10 | fvprc | |- ( -. G e. _V -> ( Base ` G ) = (/) ) |
|
| 11 | prcnel | |- ( -. G e. _V -> -. G e. ( _V X. _V ) ) |
|
| 12 | 11 | iffalsed | |- ( -. G e. _V -> if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) = ( Base ` G ) ) |
| 13 | fvprc | |- ( -. G e. _V -> ( Vtx ` G ) = (/) ) |
|
| 14 | 10 12 13 | 3eqtr4rd | |- ( -. G e. _V -> ( Vtx ` G ) = if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) ) |
| 15 | 9 14 | pm2.61i | |- ( Vtx ` G ) = if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) |