This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The N -th edge in an eulerian path is the edge from P ( N ) to P ( N + 1 ) . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | upgreupthseg.i | |- I = ( iEdg ` G ) |
|
| Assertion | upgreupthseg | |- ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgreupthseg.i | |- I = ( iEdg ` G ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | 1 2 | upgreupthi | |- ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P ) -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. n e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` n ) ) = { ( P ` n ) , ( P ` ( n + 1 ) ) } ) ) |
| 4 | 2fveq3 | |- ( n = N -> ( I ` ( F ` n ) ) = ( I ` ( F ` N ) ) ) |
|
| 5 | fveq2 | |- ( n = N -> ( P ` n ) = ( P ` N ) ) |
|
| 6 | fvoveq1 | |- ( n = N -> ( P ` ( n + 1 ) ) = ( P ` ( N + 1 ) ) ) |
|
| 7 | 5 6 | preq12d | |- ( n = N -> { ( P ` n ) , ( P ` ( n + 1 ) ) } = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |
| 8 | 4 7 | eqeq12d | |- ( n = N -> ( ( I ` ( F ` n ) ) = { ( P ` n ) , ( P ` ( n + 1 ) ) } <-> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) |
| 9 | 8 | rspccv | |- ( A. n e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` n ) ) = { ( P ` n ) , ( P ` ( n + 1 ) ) } -> ( N e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) |
| 10 | 9 | 3ad2ant3 | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. n e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` n ) ) = { ( P ` n ) , ( P ` ( n + 1 ) ) } ) -> ( N e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) |
| 11 | 3 10 | syl | |- ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P ) -> ( N e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) |
| 12 | 11 | 3impia | |- ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |