This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | un2122.1 | |- ( ( ( ph /\ ps ) /\ ps /\ ps ) -> ch ) |
|
| Assertion | un2122 | |- ( ( ph /\ ps ) -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | un2122.1 | |- ( ( ( ph /\ ps ) /\ ps /\ ps ) -> ch ) |
|
| 2 | 3anass | |- ( ( ( ph /\ ps ) /\ ps /\ ps ) <-> ( ( ph /\ ps ) /\ ( ps /\ ps ) ) ) |
|
| 3 | anandir | |- ( ( ( ph /\ ps ) /\ ps ) <-> ( ( ph /\ ps ) /\ ( ps /\ ps ) ) ) |
|
| 4 | ancom | |- ( ( ( ph /\ ps ) /\ ps ) <-> ( ps /\ ( ph /\ ps ) ) ) |
|
| 5 | anabs7 | |- ( ( ps /\ ( ph /\ ps ) ) <-> ( ph /\ ps ) ) |
|
| 6 | 4 5 | bitri | |- ( ( ( ph /\ ps ) /\ ps ) <-> ( ph /\ ps ) ) |
| 7 | 3 6 | bitr3i | |- ( ( ( ph /\ ps ) /\ ( ps /\ ps ) ) <-> ( ph /\ ps ) ) |
| 8 | 2 7 | bitri | |- ( ( ( ph /\ ps ) /\ ps /\ ps ) <-> ( ph /\ ps ) ) |
| 9 | 8 1 | sylbir | |- ( ( ph /\ ps ) -> ch ) |