This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set exponentiation is an element of a transitive Tarski class. JFM CLASSES2 th. 67 (partly). (Contributed by FL, 15-Apr-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskmap | |- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ B e. T ) -> ( A ^m B ) e. T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | |- ( A e. T -> T =/= (/) ) |
|
| 2 | tskwun | |- ( ( T e. Tarski /\ Tr T /\ T =/= (/) ) -> T e. WUni ) |
|
| 3 | 2 | 3expa | |- ( ( ( T e. Tarski /\ Tr T ) /\ T =/= (/) ) -> T e. WUni ) |
| 4 | 1 3 | sylan2 | |- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T ) -> T e. WUni ) |
| 5 | 4 | 3adant3 | |- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ B e. T ) -> T e. WUni ) |
| 6 | simp2 | |- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ B e. T ) -> A e. T ) |
|
| 7 | simp3 | |- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ B e. T ) -> B e. T ) |
|
| 8 | 5 6 7 | wunmap | |- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ B e. T ) -> ( A ^m B ) e. T ) |