This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tbwlem2 | |- ( ( ph -> ( ps -> F. ) ) -> ( ( ( ph -> ch ) -> th ) -> ( ps -> th ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tbw-ax1 | |- ( ( ph -> ( ps -> F. ) ) -> ( ( ( ps -> F. ) -> ch ) -> ( ph -> ch ) ) ) |
|
| 2 | tbw-ax4 | |- ( F. -> ch ) |
|
| 3 | tbw-ax1 | |- ( ( ps -> F. ) -> ( ( F. -> ch ) -> ( ps -> ch ) ) ) |
|
| 4 | tbwlem1 | |- ( ( ( ps -> F. ) -> ( ( F. -> ch ) -> ( ps -> ch ) ) ) -> ( ( F. -> ch ) -> ( ( ps -> F. ) -> ( ps -> ch ) ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( ( F. -> ch ) -> ( ( ps -> F. ) -> ( ps -> ch ) ) ) |
| 6 | 2 5 | ax-mp | |- ( ( ps -> F. ) -> ( ps -> ch ) ) |
| 7 | tbwlem1 | |- ( ( ( ps -> F. ) -> ( ps -> ch ) ) -> ( ps -> ( ( ps -> F. ) -> ch ) ) ) |
|
| 8 | 6 7 | ax-mp | |- ( ps -> ( ( ps -> F. ) -> ch ) ) |
| 9 | tbw-ax1 | |- ( ( ps -> ( ( ps -> F. ) -> ch ) ) -> ( ( ( ( ps -> F. ) -> ch ) -> ( ph -> ch ) ) -> ( ps -> ( ph -> ch ) ) ) ) |
|
| 10 | 8 9 | ax-mp | |- ( ( ( ( ps -> F. ) -> ch ) -> ( ph -> ch ) ) -> ( ps -> ( ph -> ch ) ) ) |
| 11 | 1 10 | tbwsyl | |- ( ( ph -> ( ps -> F. ) ) -> ( ps -> ( ph -> ch ) ) ) |
| 12 | tbw-ax1 | |- ( ( ps -> ( ph -> ch ) ) -> ( ( ( ph -> ch ) -> th ) -> ( ps -> th ) ) ) |
|
| 13 | 11 12 | tbwsyl | |- ( ( ph -> ( ps -> F. ) ) -> ( ( ( ph -> ch ) -> th ) -> ( ps -> th ) ) ) |