This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of spcimgfi1 as of 27-Jul-2025. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spcimgfi1.1 | |- F/ x ps |
|
| spcimgfi1.2 | |- F/_ x A |
||
| Assertion | spcimgfi1OLD | |- ( A. x ( x = A -> ( ph -> ps ) ) -> ( A e. B -> ( A. x ph -> ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcimgfi1.1 | |- F/ x ps |
|
| 2 | spcimgfi1.2 | |- F/_ x A |
|
| 3 | elex | |- ( A e. B -> A e. _V ) |
|
| 4 | 2 | issetf | |- ( A e. _V <-> E. x x = A ) |
| 5 | exim | |- ( A. x ( x = A -> ( ph -> ps ) ) -> ( E. x x = A -> E. x ( ph -> ps ) ) ) |
|
| 6 | 4 5 | biimtrid | |- ( A. x ( x = A -> ( ph -> ps ) ) -> ( A e. _V -> E. x ( ph -> ps ) ) ) |
| 7 | 1 | 19.36 | |- ( E. x ( ph -> ps ) <-> ( A. x ph -> ps ) ) |
| 8 | 6 7 | imbitrdi | |- ( A. x ( x = A -> ( ph -> ps ) ) -> ( A e. _V -> ( A. x ph -> ps ) ) ) |
| 9 | 3 8 | syl5 | |- ( A. x ( x = A -> ( ph -> ps ) ) -> ( A e. B -> ( A. x ph -> ps ) ) ) |