This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem simp123

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp123
|- ( ( ( th /\ ( ph /\ ps /\ ch ) /\ ta ) /\ et /\ ze ) -> ch )

Proof

Step Hyp Ref Expression
1 simp23
 |-  ( ( th /\ ( ph /\ ps /\ ch ) /\ ta ) -> ch )
2 1 3ad2ant1
 |-  ( ( ( th /\ ( ph /\ ps /\ ch ) /\ ta ) /\ et /\ ze ) -> ch )