This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A substitution into a theorem yields a theorem. See sbtALT for a shorter proof requiring more axioms. See chvar and chvarv for versions using implicit substitution. (Contributed by NM, 21-Jan-2004) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof shortened by Wolf Lammen, 20-Jul-2018) Revise df-sb . (Revised by Steven Nguyen, 6-Jul-2023) Revise df-sb again. (Revised by Wolf Lammen, 4-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbt.1 | |- ph |
|
| Assertion | sbt | |- [ t / x ] ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbt.1 | |- ph |
|
| 2 | 1 | sbtlem | |- A. y ( y = t -> A. x ( x = y -> ph ) ) |
| 3 | 1 | sbtlem | |- A. z ( z = t -> A. x ( x = z -> ph ) ) |
| 4 | 2 3 | 2th | |- ( A. y ( y = t -> A. x ( x = y -> ph ) ) <-> A. z ( z = t -> A. x ( x = z -> ph ) ) ) |
| 5 | 4 | df-sb | |- ( [ t / x ] ph <-> A. y ( y = t -> A. x ( x = y -> ph ) ) ) |
| 6 | 2 5 | mpbir | |- [ t / x ] ph |