This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.121 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 28-Jun-2011) (Proof shortened by Wolf Lammen, 9-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbeqalb | |- ( A e. V -> ( ( A. x ( ph <-> x = A ) /\ A. x ( ph <-> x = B ) ) -> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bibi1 | |- ( ( ph <-> x = A ) -> ( ( ph <-> x = B ) <-> ( x = A <-> x = B ) ) ) |
|
| 2 | 1 | biimpa | |- ( ( ( ph <-> x = A ) /\ ( ph <-> x = B ) ) -> ( x = A <-> x = B ) ) |
| 3 | 2 | biimpd | |- ( ( ( ph <-> x = A ) /\ ( ph <-> x = B ) ) -> ( x = A -> x = B ) ) |
| 4 | 3 | alanimi | |- ( ( A. x ( ph <-> x = A ) /\ A. x ( ph <-> x = B ) ) -> A. x ( x = A -> x = B ) ) |
| 5 | sbceqal | |- ( A e. V -> ( A. x ( x = A -> x = B ) -> A = B ) ) |
|
| 6 | 4 5 | syl5 | |- ( A e. V -> ( ( A. x ( ph <-> x = A ) /\ A. x ( ph <-> x = B ) ) -> A = B ) ) |