This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for a length 8 word. (Contributed by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | s2eqd.1 | |- ( ph -> A = N ) |
|
| s2eqd.2 | |- ( ph -> B = O ) |
||
| s3eqd.3 | |- ( ph -> C = P ) |
||
| s4eqd.4 | |- ( ph -> D = Q ) |
||
| s5eqd.5 | |- ( ph -> E = R ) |
||
| s6eqd.6 | |- ( ph -> F = S ) |
||
| s7eqd.6 | |- ( ph -> G = T ) |
||
| s8eqd.6 | |- ( ph -> H = U ) |
||
| Assertion | s8eqd | |- ( ph -> <" A B C D E F G H "> = <" N O P Q R S T U "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s2eqd.1 | |- ( ph -> A = N ) |
|
| 2 | s2eqd.2 | |- ( ph -> B = O ) |
|
| 3 | s3eqd.3 | |- ( ph -> C = P ) |
|
| 4 | s4eqd.4 | |- ( ph -> D = Q ) |
|
| 5 | s5eqd.5 | |- ( ph -> E = R ) |
|
| 6 | s6eqd.6 | |- ( ph -> F = S ) |
|
| 7 | s7eqd.6 | |- ( ph -> G = T ) |
|
| 8 | s8eqd.6 | |- ( ph -> H = U ) |
|
| 9 | 1 2 3 4 5 6 7 | s7eqd | |- ( ph -> <" A B C D E F G "> = <" N O P Q R S T "> ) |
| 10 | 8 | s1eqd | |- ( ph -> <" H "> = <" U "> ) |
| 11 | 9 10 | oveq12d | |- ( ph -> ( <" A B C D E F G "> ++ <" H "> ) = ( <" N O P Q R S T "> ++ <" U "> ) ) |
| 12 | df-s8 | |- <" A B C D E F G H "> = ( <" A B C D E F G "> ++ <" H "> ) |
|
| 13 | df-s8 | |- <" N O P Q R S T U "> = ( <" N O P Q R S T "> ++ <" U "> ) |
|
| 14 | 11 12 13 | 3eqtr4g | |- ( ph -> <" A B C D E F G H "> = <" N O P Q R S T U "> ) |