This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for a length 5 word. (Contributed by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | s2eqd.1 | |- ( ph -> A = N ) |
|
| s2eqd.2 | |- ( ph -> B = O ) |
||
| s3eqd.3 | |- ( ph -> C = P ) |
||
| s4eqd.4 | |- ( ph -> D = Q ) |
||
| s5eqd.5 | |- ( ph -> E = R ) |
||
| Assertion | s5eqd | |- ( ph -> <" A B C D E "> = <" N O P Q R "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s2eqd.1 | |- ( ph -> A = N ) |
|
| 2 | s2eqd.2 | |- ( ph -> B = O ) |
|
| 3 | s3eqd.3 | |- ( ph -> C = P ) |
|
| 4 | s4eqd.4 | |- ( ph -> D = Q ) |
|
| 5 | s5eqd.5 | |- ( ph -> E = R ) |
|
| 6 | 1 2 3 4 | s4eqd | |- ( ph -> <" A B C D "> = <" N O P Q "> ) |
| 7 | 5 | s1eqd | |- ( ph -> <" E "> = <" R "> ) |
| 8 | 6 7 | oveq12d | |- ( ph -> ( <" A B C D "> ++ <" E "> ) = ( <" N O P Q "> ++ <" R "> ) ) |
| 9 | df-s5 | |- <" A B C D E "> = ( <" A B C D "> ++ <" E "> ) |
|
| 10 | df-s5 | |- <" N O P Q R "> = ( <" N O P Q "> ++ <" R "> ) |
|
| 11 | 8 9 10 | 3eqtr4g | |- ( ph -> <" A B C D E "> = <" N O P Q R "> ) |