This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of the restricted converse epsilon is the union of the restriction. (Contributed by Peter Mazsa, 11-Feb-2018) (Revised by Peter Mazsa, 26-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rncnvepres | |- ran ( `' _E |` A ) = U. A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnopab | |- ran { <. x , y >. | ( x e. A /\ y e. x ) } = { y | E. x ( x e. A /\ y e. x ) } |
|
| 2 | cnvepres | |- ( `' _E |` A ) = { <. x , y >. | ( x e. A /\ y e. x ) } |
|
| 3 | 2 | rneqi | |- ran ( `' _E |` A ) = ran { <. x , y >. | ( x e. A /\ y e. x ) } |
| 4 | dfuni2 | |- U. A = { y | E. x e. A y e. x } |
|
| 5 | df-rex | |- ( E. x e. A y e. x <-> E. x ( x e. A /\ y e. x ) ) |
|
| 6 | 5 | abbii | |- { y | E. x e. A y e. x } = { y | E. x ( x e. A /\ y e. x ) } |
| 7 | 4 6 | eqtri | |- U. A = { y | E. x ( x e. A /\ y e. x ) } |
| 8 | 1 3 7 | 3eqtr4i | |- ran ( `' _E |` A ) = U. A |