This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a one-to-one onto function to an intersection maps onto the intersection of the images. (Contributed by Paul Chapman, 11-Apr-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resin | |- ( ( Fun `' F /\ ( F |` A ) : A -onto-> C /\ ( F |` B ) : B -onto-> D ) -> ( F |` ( A i^i B ) ) : ( A i^i B ) -1-1-onto-> ( C i^i D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdif | |- ( ( Fun `' F /\ ( F |` A ) : A -onto-> C /\ ( F |` B ) : B -onto-> D ) -> ( F |` ( A \ B ) ) : ( A \ B ) -1-1-onto-> ( C \ D ) ) |
|
| 2 | f1ofo | |- ( ( F |` ( A \ B ) ) : ( A \ B ) -1-1-onto-> ( C \ D ) -> ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( C \ D ) ) |
|
| 3 | 1 2 | syl | |- ( ( Fun `' F /\ ( F |` A ) : A -onto-> C /\ ( F |` B ) : B -onto-> D ) -> ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( C \ D ) ) |
| 4 | resdif | |- ( ( Fun `' F /\ ( F |` A ) : A -onto-> C /\ ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( C \ D ) ) -> ( F |` ( A \ ( A \ B ) ) ) : ( A \ ( A \ B ) ) -1-1-onto-> ( C \ ( C \ D ) ) ) |
|
| 5 | 3 4 | syld3an3 | |- ( ( Fun `' F /\ ( F |` A ) : A -onto-> C /\ ( F |` B ) : B -onto-> D ) -> ( F |` ( A \ ( A \ B ) ) ) : ( A \ ( A \ B ) ) -1-1-onto-> ( C \ ( C \ D ) ) ) |
| 6 | dfin4 | |- ( C i^i D ) = ( C \ ( C \ D ) ) |
|
| 7 | f1oeq3 | |- ( ( C i^i D ) = ( C \ ( C \ D ) ) -> ( ( F |` ( A i^i B ) ) : ( A i^i B ) -1-1-onto-> ( C i^i D ) <-> ( F |` ( A i^i B ) ) : ( A i^i B ) -1-1-onto-> ( C \ ( C \ D ) ) ) ) |
|
| 8 | 6 7 | ax-mp | |- ( ( F |` ( A i^i B ) ) : ( A i^i B ) -1-1-onto-> ( C i^i D ) <-> ( F |` ( A i^i B ) ) : ( A i^i B ) -1-1-onto-> ( C \ ( C \ D ) ) ) |
| 9 | dfin4 | |- ( A i^i B ) = ( A \ ( A \ B ) ) |
|
| 10 | f1oeq2 | |- ( ( A i^i B ) = ( A \ ( A \ B ) ) -> ( ( F |` ( A i^i B ) ) : ( A i^i B ) -1-1-onto-> ( C \ ( C \ D ) ) <-> ( F |` ( A i^i B ) ) : ( A \ ( A \ B ) ) -1-1-onto-> ( C \ ( C \ D ) ) ) ) |
|
| 11 | 9 10 | ax-mp | |- ( ( F |` ( A i^i B ) ) : ( A i^i B ) -1-1-onto-> ( C \ ( C \ D ) ) <-> ( F |` ( A i^i B ) ) : ( A \ ( A \ B ) ) -1-1-onto-> ( C \ ( C \ D ) ) ) |
| 12 | 9 | reseq2i | |- ( F |` ( A i^i B ) ) = ( F |` ( A \ ( A \ B ) ) ) |
| 13 | f1oeq1 | |- ( ( F |` ( A i^i B ) ) = ( F |` ( A \ ( A \ B ) ) ) -> ( ( F |` ( A i^i B ) ) : ( A \ ( A \ B ) ) -1-1-onto-> ( C \ ( C \ D ) ) <-> ( F |` ( A \ ( A \ B ) ) ) : ( A \ ( A \ B ) ) -1-1-onto-> ( C \ ( C \ D ) ) ) ) |
|
| 14 | 12 13 | ax-mp | |- ( ( F |` ( A i^i B ) ) : ( A \ ( A \ B ) ) -1-1-onto-> ( C \ ( C \ D ) ) <-> ( F |` ( A \ ( A \ B ) ) ) : ( A \ ( A \ B ) ) -1-1-onto-> ( C \ ( C \ D ) ) ) |
| 15 | 8 11 14 | 3bitrri | |- ( ( F |` ( A \ ( A \ B ) ) ) : ( A \ ( A \ B ) ) -1-1-onto-> ( C \ ( C \ D ) ) <-> ( F |` ( A i^i B ) ) : ( A i^i B ) -1-1-onto-> ( C i^i D ) ) |
| 16 | 5 15 | sylib | |- ( ( Fun `' F /\ ( F |` A ) : A -onto-> C /\ ( F |` B ) : B -onto-> D ) -> ( F |` ( A i^i B ) ) : ( A i^i B ) -1-1-onto-> ( C i^i D ) ) |