This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A regular T_0 space is Hausdorff. In other words, a T_3 space is T_2 . A regular Hausdorff or T_0 space is also known as a T_3 space. (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reghaus | |- ( J e. Reg -> ( J e. Haus <-> J e. Kol2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haust1 | |- ( J e. Haus -> J e. Fre ) |
|
| 2 | t1t0 | |- ( J e. Fre -> J e. Kol2 ) |
|
| 3 | 1 2 | syl | |- ( J e. Haus -> J e. Kol2 ) |
| 4 | regr1 | |- ( J e. Reg -> ( KQ ` J ) e. Haus ) |
|
| 5 | 4 | anim2i | |- ( ( J e. Kol2 /\ J e. Reg ) -> ( J e. Kol2 /\ ( KQ ` J ) e. Haus ) ) |
| 6 | ishaus3 | |- ( J e. Haus <-> ( J e. Kol2 /\ ( KQ ` J ) e. Haus ) ) |
|
| 7 | 5 6 | sylibr | |- ( ( J e. Kol2 /\ J e. Reg ) -> J e. Haus ) |
| 8 | 7 | expcom | |- ( J e. Reg -> ( J e. Kol2 -> J e. Haus ) ) |
| 9 | 3 8 | impbid2 | |- ( J e. Reg -> ( J e. Haus <-> J e. Kol2 ) ) |