This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One direction of rabid2 is based on fewer axioms. (Contributed by Wolf Lammen, 26-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabid2im | |- ( A. x e. A ph -> A = { x e. A | ph } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71 | |- ( ( x e. A -> ph ) <-> ( x e. A <-> ( x e. A /\ ph ) ) ) |
|
| 2 | 1 | albii | |- ( A. x ( x e. A -> ph ) <-> A. x ( x e. A <-> ( x e. A /\ ph ) ) ) |
| 3 | eqab | |- ( A. x ( x e. A <-> ( x e. A /\ ph ) ) -> A = { x | ( x e. A /\ ph ) } ) |
|
| 4 | 2 3 | sylbi | |- ( A. x ( x e. A -> ph ) -> A = { x | ( x e. A /\ ph ) } ) |
| 5 | df-ral | |- ( A. x e. A ph <-> A. x ( x e. A -> ph ) ) |
|
| 6 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 7 | 6 | eqeq2i | |- ( A = { x e. A | ph } <-> A = { x | ( x e. A /\ ph ) } ) |
| 8 | 4 5 7 | 3imtr4i | |- ( A. x e. A ph -> A = { x e. A | ph } ) |