This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Union law for predecessor classes. (Contributed by Scott Fenton, 29-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predun | |- Pred ( R , ( A u. B ) , X ) = ( Pred ( R , A , X ) u. Pred ( R , B , X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indir | |- ( ( A u. B ) i^i ( `' R " { X } ) ) = ( ( A i^i ( `' R " { X } ) ) u. ( B i^i ( `' R " { X } ) ) ) |
|
| 2 | df-pred | |- Pred ( R , ( A u. B ) , X ) = ( ( A u. B ) i^i ( `' R " { X } ) ) |
|
| 3 | df-pred | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
|
| 4 | df-pred | |- Pred ( R , B , X ) = ( B i^i ( `' R " { X } ) ) |
|
| 5 | 3 4 | uneq12i | |- ( Pred ( R , A , X ) u. Pred ( R , B , X ) ) = ( ( A i^i ( `' R " { X } ) ) u. ( B i^i ( `' R " { X } ) ) ) |
| 6 | 1 2 5 | 3eqtr4i | |- Pred ( R , ( A u. B ) , X ) = ( Pred ( R , A , X ) u. Pred ( R , B , X ) ) |