This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *5.75 of WhiteheadRussell p. 126. (Contributed by NM, 3-Jan-2005) (Proof shortened by Andrew Salmon, 7-May-2011) (Proof shortened by Wolf Lammen, 23-Dec-2012) (Proof shortened by Kyle Wyonch, 12-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm5.75 | |- ( ( ( ch -> -. ps ) /\ ( ph <-> ( ps \/ ch ) ) ) -> ( ( ph /\ -. ps ) <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi1 | |- ( ( ph <-> ( ps \/ ch ) ) -> ( ( ph /\ -. ps ) <-> ( ( ps \/ ch ) /\ -. ps ) ) ) |
|
| 2 | biorf | |- ( -. ps -> ( ch <-> ( ps \/ ch ) ) ) |
|
| 3 | 2 | bicomd | |- ( -. ps -> ( ( ps \/ ch ) <-> ch ) ) |
| 4 | 3 | pm5.32ri | |- ( ( ( ps \/ ch ) /\ -. ps ) <-> ( ch /\ -. ps ) ) |
| 5 | 1 4 | bitrdi | |- ( ( ph <-> ( ps \/ ch ) ) -> ( ( ph /\ -. ps ) <-> ( ch /\ -. ps ) ) ) |
| 6 | abai | |- ( ( ch /\ -. ps ) <-> ( ch /\ ( ch -> -. ps ) ) ) |
|
| 7 | 6 | rbaib | |- ( ( ch -> -. ps ) -> ( ( ch /\ -. ps ) <-> ch ) ) |
| 8 | 5 7 | sylan9bbr | |- ( ( ( ch -> -. ps ) /\ ( ph <-> ( ps \/ ch ) ) ) -> ( ( ph /\ -. ps ) <-> ch ) ) |