This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem pm4.66

Description: Theorem *4.66 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm4.66
|- ( ( -. ph -> -. ps ) <-> ( ph \/ -. ps ) )

Proof

Step Hyp Ref Expression
1 pm4.64
 |-  ( ( -. ph -> -. ps ) <-> ( ph \/ -. ps ) )