This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *2.82 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm2.82 | |- ( ( ( ph \/ ps ) \/ ch ) -> ( ( ( ph \/ -. ch ) \/ th ) -> ( ( ph \/ ps ) \/ th ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.24 | |- ( ch -> ( -. ch -> ps ) ) |
|
| 2 | 1 | orim2d | |- ( ch -> ( ( ph \/ -. ch ) -> ( ph \/ ps ) ) ) |
| 3 | 2 | jao1i | |- ( ( ( ph \/ ps ) \/ ch ) -> ( ( ph \/ -. ch ) -> ( ph \/ ps ) ) ) |
| 4 | 3 | orim1d | |- ( ( ( ph \/ ps ) \/ ch ) -> ( ( ( ph \/ -. ch ) \/ th ) -> ( ( ph \/ ps ) \/ th ) ) ) |