This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem pm2.13

Description: Theorem *2.13 of WhiteheadRussell p. 101. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.13
|- ( ph \/ -. -. -. ph )

Proof

Step Hyp Ref Expression
1 notnot
 |-  ( -. ph -> -. -. -. ph )
2 1 orri
 |-  ( ph \/ -. -. -. ph )