This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of poset zero. (Contributed by NM, 12-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | p0val.b | |- B = ( Base ` K ) |
|
| p0val.g | |- G = ( glb ` K ) |
||
| p0val.z | |- .0. = ( 0. ` K ) |
||
| Assertion | p0val | |- ( K e. V -> .0. = ( G ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p0val.b | |- B = ( Base ` K ) |
|
| 2 | p0val.g | |- G = ( glb ` K ) |
|
| 3 | p0val.z | |- .0. = ( 0. ` K ) |
|
| 4 | elex | |- ( K e. V -> K e. _V ) |
|
| 5 | fveq2 | |- ( p = K -> ( glb ` p ) = ( glb ` K ) ) |
|
| 6 | 5 2 | eqtr4di | |- ( p = K -> ( glb ` p ) = G ) |
| 7 | fveq2 | |- ( p = K -> ( Base ` p ) = ( Base ` K ) ) |
|
| 8 | 7 1 | eqtr4di | |- ( p = K -> ( Base ` p ) = B ) |
| 9 | 6 8 | fveq12d | |- ( p = K -> ( ( glb ` p ) ` ( Base ` p ) ) = ( G ` B ) ) |
| 10 | df-p0 | |- 0. = ( p e. _V |-> ( ( glb ` p ) ` ( Base ` p ) ) ) |
|
| 11 | fvex | |- ( G ` B ) e. _V |
|
| 12 | 9 10 11 | fvmpt | |- ( K e. _V -> ( 0. ` K ) = ( G ` B ) ) |
| 13 | 3 12 | eqtrid | |- ( K e. _V -> .0. = ( G ` B ) ) |
| 14 | 4 13 | syl | |- ( K e. V -> .0. = ( G ` B ) ) |