This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of Enderton p. 41. (Contributed by NM, 31-Mar-1995) (Revised by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opeluu.1 | |- A e. _V |
|
| opeluu.2 | |- B e. _V |
||
| Assertion | opeluu | |- ( <. A , B >. e. C -> ( A e. U. U. C /\ B e. U. U. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeluu.1 | |- A e. _V |
|
| 2 | opeluu.2 | |- B e. _V |
|
| 3 | 1 | prid1 | |- A e. { A , B } |
| 4 | 1 2 | opi2 | |- { A , B } e. <. A , B >. |
| 5 | elunii | |- ( ( { A , B } e. <. A , B >. /\ <. A , B >. e. C ) -> { A , B } e. U. C ) |
|
| 6 | 4 5 | mpan | |- ( <. A , B >. e. C -> { A , B } e. U. C ) |
| 7 | elunii | |- ( ( A e. { A , B } /\ { A , B } e. U. C ) -> A e. U. U. C ) |
|
| 8 | 3 6 7 | sylancr | |- ( <. A , B >. e. C -> A e. U. U. C ) |
| 9 | 2 | prid2 | |- B e. { A , B } |
| 10 | elunii | |- ( ( B e. { A , B } /\ { A , B } e. U. C ) -> B e. U. U. C ) |
|
| 11 | 9 6 10 | sylancr | |- ( <. A , B >. e. C -> B e. U. U. C ) |
| 12 | 8 11 | jca | |- ( <. A , B >. e. C -> ( A e. U. U. C /\ B e. U. U. C ) ) |