This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write the distance between two points in terms of distance from zero. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngpds2.x | |- X = ( Base ` G ) |
|
| ngpds2.z | |- .0. = ( 0g ` G ) |
||
| ngpds2.m | |- .- = ( -g ` G ) |
||
| ngpds2.d | |- D = ( dist ` G ) |
||
| Assertion | ngpds3 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( .0. D ( A .- B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpds2.x | |- X = ( Base ` G ) |
|
| 2 | ngpds2.z | |- .0. = ( 0g ` G ) |
|
| 3 | ngpds2.m | |- .- = ( -g ` G ) |
|
| 4 | ngpds2.d | |- D = ( dist ` G ) |
|
| 5 | 1 2 3 4 | ngpds2 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( ( A .- B ) D .0. ) ) |
| 6 | ngpxms | |- ( G e. NrmGrp -> G e. *MetSp ) |
|
| 7 | 6 | 3ad2ant1 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> G e. *MetSp ) |
| 8 | ngpgrp | |- ( G e. NrmGrp -> G e. Grp ) |
|
| 9 | 1 3 | grpsubcl | |- ( ( G e. Grp /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) |
| 10 | 8 9 | syl3an1 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) |
| 11 | 8 | 3ad2ant1 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> G e. Grp ) |
| 12 | 1 2 | grpidcl | |- ( G e. Grp -> .0. e. X ) |
| 13 | 11 12 | syl | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> .0. e. X ) |
| 14 | 1 4 | xmssym | |- ( ( G e. *MetSp /\ ( A .- B ) e. X /\ .0. e. X ) -> ( ( A .- B ) D .0. ) = ( .0. D ( A .- B ) ) ) |
| 15 | 7 10 13 14 | syl3anc | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( ( A .- B ) D .0. ) = ( .0. D ( A .- B ) ) ) |
| 16 | 5 15 | eqtrd | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( .0. D ( A .- B ) ) ) |