This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of bound-variable hypothesis builder nfop . This shows how the deduction version of a not-free theorem such as nfop can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfopd.2 | |- ( ph -> F/_ x A ) |
|
| nfopd.3 | |- ( ph -> F/_ x B ) |
||
| Assertion | nfopd | |- ( ph -> F/_ x <. A , B >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfopd.2 | |- ( ph -> F/_ x A ) |
|
| 2 | nfopd.3 | |- ( ph -> F/_ x B ) |
|
| 3 | nfaba1 | |- F/_ x { z | A. x z e. A } |
|
| 4 | nfaba1 | |- F/_ x { z | A. x z e. B } |
|
| 5 | 3 4 | nfop | |- F/_ x <. { z | A. x z e. A } , { z | A. x z e. B } >. |
| 6 | nfnfc1 | |- F/ x F/_ x A |
|
| 7 | nfnfc1 | |- F/ x F/_ x B |
|
| 8 | 6 7 | nfan | |- F/ x ( F/_ x A /\ F/_ x B ) |
| 9 | abidnf | |- ( F/_ x A -> { z | A. x z e. A } = A ) |
|
| 10 | 9 | adantr | |- ( ( F/_ x A /\ F/_ x B ) -> { z | A. x z e. A } = A ) |
| 11 | abidnf | |- ( F/_ x B -> { z | A. x z e. B } = B ) |
|
| 12 | 11 | adantl | |- ( ( F/_ x A /\ F/_ x B ) -> { z | A. x z e. B } = B ) |
| 13 | 10 12 | opeq12d | |- ( ( F/_ x A /\ F/_ x B ) -> <. { z | A. x z e. A } , { z | A. x z e. B } >. = <. A , B >. ) |
| 14 | 8 13 | nfceqdf | |- ( ( F/_ x A /\ F/_ x B ) -> ( F/_ x <. { z | A. x z e. A } , { z | A. x z e. B } >. <-> F/_ x <. A , B >. ) ) |
| 15 | 1 2 14 | syl2anc | |- ( ph -> ( F/_ x <. { z | A. x z e. A } , { z | A. x z e. B } >. <-> F/_ x <. A , B >. ) ) |
| 16 | 5 15 | mpbii | |- ( ph -> F/_ x <. A , B >. ) |