This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem nanbi12

Description: Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018)

Ref Expression
Assertion nanbi12
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( ph -/\ ch ) <-> ( ps -/\ th ) ) )

Proof

Step Hyp Ref Expression
1 nanbi1
 |-  ( ( ph <-> ps ) -> ( ( ph -/\ ch ) <-> ( ps -/\ ch ) ) )
2 nanbi2
 |-  ( ( ch <-> th ) -> ( ( ps -/\ ch ) <-> ( ps -/\ th ) ) )
3 1 2 sylan9bb
 |-  ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( ph -/\ ch ) <-> ( ps -/\ th ) ) )