This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulpiord | |- ( ( A e. N. /\ B e. N. ) -> ( A .N B ) = ( A .o B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi | |- ( ( A e. N. /\ B e. N. ) -> <. A , B >. e. ( N. X. N. ) ) |
|
| 2 | fvres | |- ( <. A , B >. e. ( N. X. N. ) -> ( ( .o |` ( N. X. N. ) ) ` <. A , B >. ) = ( .o ` <. A , B >. ) ) |
|
| 3 | df-ov | |- ( A .N B ) = ( .N ` <. A , B >. ) |
|
| 4 | df-mi | |- .N = ( .o |` ( N. X. N. ) ) |
|
| 5 | 4 | fveq1i | |- ( .N ` <. A , B >. ) = ( ( .o |` ( N. X. N. ) ) ` <. A , B >. ) |
| 6 | 3 5 | eqtri | |- ( A .N B ) = ( ( .o |` ( N. X. N. ) ) ` <. A , B >. ) |
| 7 | df-ov | |- ( A .o B ) = ( .o ` <. A , B >. ) |
|
| 8 | 2 6 7 | 3eqtr4g | |- ( <. A , B >. e. ( N. X. N. ) -> ( A .N B ) = ( A .o B ) ) |
| 9 | 1 8 | syl | |- ( ( A e. N. /\ B e. N. ) -> ( A .N B ) = ( A .o B ) ) |