This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem mt2bi

Description: A false consequent falsifies an antecedent. (Contributed by NM, 19-Aug-1993) (Proof shortened by Wolf Lammen, 12-Nov-2012)

Ref Expression
Hypothesis mt2bi.1
|- ph
Assertion mt2bi
|- ( -. ps <-> ( ps -> -. ph ) )

Proof

Step Hyp Ref Expression
1 mt2bi.1
 |-  ph
2 1 a1bi
 |-  ( -. ps <-> ( ph -> -. ps ) )
3 con2b
 |-  ( ( ph -> -. ps ) <-> ( ps -> -. ph ) )
4 2 3 bitri
 |-  ( -. ps <-> ( ps -> -. ph ) )