This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Between steps 14 and 15 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 22-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | merlem7 | |- ( ph -> ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | merlem4 | |- ( ( ps -> ch ) -> ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) ) ) |
|
| 2 | merlem6 | |- ( ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) -> ( ( ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) ) -> -. ph ) -> ( -. ch -> -. ph ) ) ) |
|
| 3 | meredith | |- ( ( ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) -> ( ( ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) ) -> -. ph ) -> ( -. ch -> -. ph ) ) ) -> ( ( ( ( ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) ) -> -. ph ) -> ( -. ch -> -. ph ) ) -> ch ) -> ( ps -> ch ) ) ) |
|
| 4 | 2 3 | ax-mp | |- ( ( ( ( ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) ) -> -. ph ) -> ( -. ch -> -. ph ) ) -> ch ) -> ( ps -> ch ) ) |
| 5 | meredith | |- ( ( ( ( ( ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) ) -> -. ph ) -> ( -. ch -> -. ph ) ) -> ch ) -> ( ps -> ch ) ) -> ( ( ( ps -> ch ) -> ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) ) ) -> ( ph -> ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) ) ) ) ) |
|
| 6 | 4 5 | ax-mp | |- ( ( ( ps -> ch ) -> ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) ) ) -> ( ph -> ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) ) ) ) |
| 7 | 1 6 | ax-mp | |- ( ph -> ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) ) ) |