This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Step 7 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | merlem3 | |- ( ( ( ps -> ch ) -> ph ) -> ( ch -> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | merlem2 | |- ( ( ( -. ch -> -. ch ) -> ( -. ch -> -. ch ) ) -> ( ( ph -> ph ) -> ( -. ch -> -. ch ) ) ) |
|
| 2 | merlem2 | |- ( ( ( ( -. ch -> -. ch ) -> ( -. ch -> -. ch ) ) -> ( ( ph -> ph ) -> ( -. ch -> -. ch ) ) ) -> ( ( ( ( ch -> ph ) -> ( -. ps -> -. ps ) ) -> ps ) -> ( ( ph -> ph ) -> ( -. ch -> -. ch ) ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( ( ( ( ch -> ph ) -> ( -. ps -> -. ps ) ) -> ps ) -> ( ( ph -> ph ) -> ( -. ch -> -. ch ) ) ) |
| 4 | meredith | |- ( ( ( ( ( ch -> ph ) -> ( -. ps -> -. ps ) ) -> ps ) -> ( ( ph -> ph ) -> ( -. ch -> -. ch ) ) ) -> ( ( ( ( ph -> ph ) -> ( -. ch -> -. ch ) ) -> ch ) -> ( ps -> ch ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( ( ( ( ph -> ph ) -> ( -. ch -> -. ch ) ) -> ch ) -> ( ps -> ch ) ) |
| 6 | meredith | |- ( ( ( ( ( ph -> ph ) -> ( -. ch -> -. ch ) ) -> ch ) -> ( ps -> ch ) ) -> ( ( ( ps -> ch ) -> ph ) -> ( ch -> ph ) ) ) |
|
| 7 | 5 6 | ax-mp | |- ( ( ( ps -> ch ) -> ph ) -> ( ch -> ph ) ) |