This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Step 19 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | merlem10 | |- ( ( ph -> ( ph -> ps ) ) -> ( th -> ( ph -> ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meredith | |- ( ( ( ( ( ph -> ph ) -> ( -. ph -> -. ph ) ) -> ph ) -> ph ) -> ( ( ph -> ph ) -> ( ph -> ph ) ) ) |
|
| 2 | meredith | |- ( ( ( ( ( ( ph -> ps ) -> ph ) -> ( -. ph -> -. th ) ) -> ph ) -> ph ) -> ( ( ph -> ( ph -> ps ) ) -> ( th -> ( ph -> ps ) ) ) ) |
|
| 3 | merlem9 | |- ( ( ( ( ( ( ( ph -> ps ) -> ph ) -> ( -. ph -> -. th ) ) -> ph ) -> ph ) -> ( ( ph -> ( ph -> ps ) ) -> ( th -> ( ph -> ps ) ) ) ) -> ( ( ( ( ( ( ph -> ph ) -> ( -. ph -> -. ph ) ) -> ph ) -> ph ) -> ( ( ph -> ph ) -> ( ph -> ph ) ) ) -> ( ( ph -> ( ph -> ps ) ) -> ( th -> ( ph -> ps ) ) ) ) ) |
|
| 4 | 2 3 | ax-mp | |- ( ( ( ( ( ( ph -> ph ) -> ( -. ph -> -. ph ) ) -> ph ) -> ph ) -> ( ( ph -> ph ) -> ( ph -> ph ) ) ) -> ( ( ph -> ( ph -> ps ) ) -> ( th -> ( ph -> ps ) ) ) ) |
| 5 | 1 4 | ax-mp | |- ( ( ph -> ( ph -> ps ) ) -> ( th -> ( ph -> ps ) ) ) |