This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Step 3 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (The step numbers refer to Meredith's original paper.) (Contributed by NM, 14-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | merlem1 | |- ( ( ( ch -> ( -. ph -> ps ) ) -> ta ) -> ( ph -> ta ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meredith | |- ( ( ( ( ( -. ph -> ps ) -> ( -. ( -. ta -> -. ch ) -> -. -. ( -. ph -> ps ) ) ) -> ( -. ta -> -. ch ) ) -> ta ) -> ( ( ta -> -. ph ) -> ( -. ( -. ph -> ps ) -> -. ph ) ) ) |
|
| 2 | meredith | |- ( ( ( ( ( ( -. ph -> ps ) -> ( -. ( -. ta -> -. ch ) -> -. -. ( -. ph -> ps ) ) ) -> ( -. ta -> -. ch ) ) -> ta ) -> ( ( ta -> -. ph ) -> ( -. ( -. ph -> ps ) -> -. ph ) ) ) -> ( ( ( ( ta -> -. ph ) -> ( -. ( -. ph -> ps ) -> -. ph ) ) -> ( -. ph -> ps ) ) -> ( ch -> ( -. ph -> ps ) ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( ( ( ( ta -> -. ph ) -> ( -. ( -. ph -> ps ) -> -. ph ) ) -> ( -. ph -> ps ) ) -> ( ch -> ( -. ph -> ps ) ) ) |
| 4 | meredith | |- ( ( ( ( ( ta -> -. ph ) -> ( -. ( -. ph -> ps ) -> -. ph ) ) -> ( -. ph -> ps ) ) -> ( ch -> ( -. ph -> ps ) ) ) -> ( ( ( ch -> ( -. ph -> ps ) ) -> ta ) -> ( ph -> ta ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( ( ( ch -> ( -. ph -> ps ) ) -> ta ) -> ( ph -> ta ) ) |