This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 . (Contributed by Anthony Hart, 18-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | merco1lem10 | |- ( ( ( ( ( ph -> ps ) -> ch ) -> ( ta -> ch ) ) -> ph ) -> ( th -> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | merco1 | |- ( ( ( ( ( ch -> ph ) -> ( ta -> F. ) ) -> ph ) -> ( ph -> ps ) ) -> ( ( ( ph -> ps ) -> ch ) -> ( ta -> ch ) ) ) |
|
| 2 | merco1lem2 | |- ( ( ( ( ( ( ch -> ph ) -> ( ta -> F. ) ) -> ph ) -> ( ph -> ps ) ) -> ( ( ( ph -> ps ) -> ch ) -> ( ta -> ch ) ) ) -> ( ( ( ( ph -> ps ) -> ( th -> F. ) ) -> ( ( ( ( ch -> ph ) -> ( ta -> F. ) ) -> ph ) -> F. ) ) -> ( ( ( ph -> ps ) -> ch ) -> ( ta -> ch ) ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( ( ( ( ph -> ps ) -> ( th -> F. ) ) -> ( ( ( ( ch -> ph ) -> ( ta -> F. ) ) -> ph ) -> F. ) ) -> ( ( ( ph -> ps ) -> ch ) -> ( ta -> ch ) ) ) |
| 4 | merco1 | |- ( ( ( ( ( ph -> ps ) -> ( th -> F. ) ) -> ( ( ( ( ch -> ph ) -> ( ta -> F. ) ) -> ph ) -> F. ) ) -> ( ( ( ph -> ps ) -> ch ) -> ( ta -> ch ) ) ) -> ( ( ( ( ( ph -> ps ) -> ch ) -> ( ta -> ch ) ) -> ph ) -> ( th -> ph ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( ( ( ( ( ph -> ps ) -> ch ) -> ( ta -> ch ) ) -> ph ) -> ( th -> ph ) ) |