This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singleton word consisting of a vertex V represents a closed walk of length 1 iff there is a loop at vertex V . (Contributed by AV, 11-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | loopclwwlkn1b | |- ( V e. ( Vtx ` G ) -> ( { V } e. ( Edg ` G ) <-> <" V "> e. ( 1 ClWWalksN G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlkn1 | |- ( <" V "> e. ( 1 ClWWalksN G ) <-> ( ( # ` <" V "> ) = 1 /\ <" V "> e. Word ( Vtx ` G ) /\ { ( <" V "> ` 0 ) } e. ( Edg ` G ) ) ) |
|
| 2 | s1fv | |- ( V e. ( Vtx ` G ) -> ( <" V "> ` 0 ) = V ) |
|
| 3 | 2 | sneqd | |- ( V e. ( Vtx ` G ) -> { ( <" V "> ` 0 ) } = { V } ) |
| 4 | 3 | eleq1d | |- ( V e. ( Vtx ` G ) -> ( { ( <" V "> ` 0 ) } e. ( Edg ` G ) <-> { V } e. ( Edg ` G ) ) ) |
| 5 | 4 | biimpcd | |- ( { ( <" V "> ` 0 ) } e. ( Edg ` G ) -> ( V e. ( Vtx ` G ) -> { V } e. ( Edg ` G ) ) ) |
| 6 | 5 | 3ad2ant3 | |- ( ( ( # ` <" V "> ) = 1 /\ <" V "> e. Word ( Vtx ` G ) /\ { ( <" V "> ` 0 ) } e. ( Edg ` G ) ) -> ( V e. ( Vtx ` G ) -> { V } e. ( Edg ` G ) ) ) |
| 7 | 6 | com12 | |- ( V e. ( Vtx ` G ) -> ( ( ( # ` <" V "> ) = 1 /\ <" V "> e. Word ( Vtx ` G ) /\ { ( <" V "> ` 0 ) } e. ( Edg ` G ) ) -> { V } e. ( Edg ` G ) ) ) |
| 8 | s1len | |- ( # ` <" V "> ) = 1 |
|
| 9 | 8 | a1i | |- ( ( V e. ( Vtx ` G ) /\ { V } e. ( Edg ` G ) ) -> ( # ` <" V "> ) = 1 ) |
| 10 | s1cl | |- ( V e. ( Vtx ` G ) -> <" V "> e. Word ( Vtx ` G ) ) |
|
| 11 | 10 | adantr | |- ( ( V e. ( Vtx ` G ) /\ { V } e. ( Edg ` G ) ) -> <" V "> e. Word ( Vtx ` G ) ) |
| 12 | 2 | eqcomd | |- ( V e. ( Vtx ` G ) -> V = ( <" V "> ` 0 ) ) |
| 13 | 12 | sneqd | |- ( V e. ( Vtx ` G ) -> { V } = { ( <" V "> ` 0 ) } ) |
| 14 | 13 | eleq1d | |- ( V e. ( Vtx ` G ) -> ( { V } e. ( Edg ` G ) <-> { ( <" V "> ` 0 ) } e. ( Edg ` G ) ) ) |
| 15 | 14 | biimpa | |- ( ( V e. ( Vtx ` G ) /\ { V } e. ( Edg ` G ) ) -> { ( <" V "> ` 0 ) } e. ( Edg ` G ) ) |
| 16 | 9 11 15 | 3jca | |- ( ( V e. ( Vtx ` G ) /\ { V } e. ( Edg ` G ) ) -> ( ( # ` <" V "> ) = 1 /\ <" V "> e. Word ( Vtx ` G ) /\ { ( <" V "> ` 0 ) } e. ( Edg ` G ) ) ) |
| 17 | 16 | ex | |- ( V e. ( Vtx ` G ) -> ( { V } e. ( Edg ` G ) -> ( ( # ` <" V "> ) = 1 /\ <" V "> e. Word ( Vtx ` G ) /\ { ( <" V "> ` 0 ) } e. ( Edg ` G ) ) ) ) |
| 18 | 7 17 | impbid | |- ( V e. ( Vtx ` G ) -> ( ( ( # ` <" V "> ) = 1 /\ <" V "> e. Word ( Vtx ` G ) /\ { ( <" V "> ` 0 ) } e. ( Edg ` G ) ) <-> { V } e. ( Edg ` G ) ) ) |
| 19 | 1 18 | bitr2id | |- ( V e. ( Vtx ` G ) -> ( { V } e. ( Edg ` G ) <-> <" V "> e. ( 1 ClWWalksN G ) ) ) |