This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is a local property, then both Locally A and N-Locally A simplify to A . (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | loclly | |- ( Locally A = A <-> N-Locally A = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | |- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> j e. A ) |
|
| 2 | simpl | |- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> Locally A = A ) |
|
| 3 | 1 2 | eleqtrrd | |- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> j e. Locally A ) |
| 4 | simprr | |- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> x e. j ) |
|
| 5 | llyrest | |- ( ( j e. Locally A /\ x e. j ) -> ( j |`t x ) e. Locally A ) |
|
| 6 | 3 4 5 | syl2anc | |- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> ( j |`t x ) e. Locally A ) |
| 7 | 6 2 | eleqtrd | |- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> ( j |`t x ) e. A ) |
| 8 | 7 | restnlly | |- ( Locally A = A -> N-Locally A = Locally A ) |
| 9 | id | |- ( Locally A = A -> Locally A = A ) |
|
| 10 | 8 9 | eqtrd | |- ( Locally A = A -> N-Locally A = A ) |
| 11 | simprl | |- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> j e. A ) |
|
| 12 | simpl | |- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> N-Locally A = A ) |
|
| 13 | 11 12 | eleqtrrd | |- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> j e. N-Locally A ) |
| 14 | simprr | |- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> x e. j ) |
|
| 15 | nllyrest | |- ( ( j e. N-Locally A /\ x e. j ) -> ( j |`t x ) e. N-Locally A ) |
|
| 16 | 13 14 15 | syl2anc | |- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> ( j |`t x ) e. N-Locally A ) |
| 17 | 16 12 | eleqtrd | |- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> ( j |`t x ) e. A ) |
| 18 | 17 | restnlly | |- ( N-Locally A = A -> N-Locally A = Locally A ) |
| 19 | id | |- ( N-Locally A = A -> N-Locally A = A ) |
|
| 20 | 18 19 | eqtr3d | |- ( N-Locally A = A -> Locally A = A ) |
| 21 | 10 20 | impbii | |- ( Locally A = A <-> N-Locally A = A ) |