This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Solution of a (scalar) linear equation. (Contributed by BJ, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lineq.a | |- ( ph -> A e. CC ) |
|
| lineq.b | |- ( ph -> B e. CC ) |
||
| lineq.x | |- ( ph -> X e. CC ) |
||
| lineq.y | |- ( ph -> Y e. CC ) |
||
| lineq.n0 | |- ( ph -> A =/= 0 ) |
||
| Assertion | lineq | |- ( ph -> ( ( ( A x. X ) + B ) = Y <-> X = ( ( Y - B ) / A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lineq.a | |- ( ph -> A e. CC ) |
|
| 2 | lineq.b | |- ( ph -> B e. CC ) |
|
| 3 | lineq.x | |- ( ph -> X e. CC ) |
|
| 4 | lineq.y | |- ( ph -> Y e. CC ) |
|
| 5 | lineq.n0 | |- ( ph -> A =/= 0 ) |
|
| 6 | 1 3 | mulcld | |- ( ph -> ( A x. X ) e. CC ) |
| 7 | 6 2 4 | addlsub | |- ( ph -> ( ( ( A x. X ) + B ) = Y <-> ( A x. X ) = ( Y - B ) ) ) |
| 8 | 4 2 | subcld | |- ( ph -> ( Y - B ) e. CC ) |
| 9 | 1 3 8 5 | rdiv | |- ( ph -> ( ( A x. X ) = ( Y - B ) <-> X = ( ( Y - B ) / A ) ) ) |
| 10 | 7 9 | bitrd | |- ( ph -> ( ( ( A x. X ) + B ) = Y <-> X = ( ( Y - B ) / A ) ) ) |