This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 10-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latlej.b | |- B = ( Base ` K ) |
|
| latlej.l | |- .<_ = ( le ` K ) |
||
| latlej.j | |- .\/ = ( join ` K ) |
||
| Assertion | latnlej2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ -. X .<_ ( Y .\/ Z ) ) -> ( -. X .<_ Y /\ -. X .<_ Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | |- B = ( Base ` K ) |
|
| 2 | latlej.l | |- .<_ = ( le ` K ) |
|
| 3 | latlej.j | |- .\/ = ( join ` K ) |
|
| 4 | 1 2 3 | latlej1 | |- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> Y .<_ ( Y .\/ Z ) ) |
| 5 | 4 | 3adant3r1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y .<_ ( Y .\/ Z ) ) |
| 6 | simpl | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. Lat ) |
|
| 7 | simpr1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
|
| 8 | simpr2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B ) |
|
| 9 | 1 3 | latjcl | |- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> ( Y .\/ Z ) e. B ) |
| 10 | 9 | 3adant3r1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y .\/ Z ) e. B ) |
| 11 | 1 2 | lattr | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ ( Y .\/ Z ) e. B ) ) -> ( ( X .<_ Y /\ Y .<_ ( Y .\/ Z ) ) -> X .<_ ( Y .\/ Z ) ) ) |
| 12 | 6 7 8 10 11 | syl13anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .<_ ( Y .\/ Z ) ) -> X .<_ ( Y .\/ Z ) ) ) |
| 13 | 5 12 | mpan2d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y -> X .<_ ( Y .\/ Z ) ) ) |
| 14 | 13 | con3d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( -. X .<_ ( Y .\/ Z ) -> -. X .<_ Y ) ) |
| 15 | 1 2 3 | latlej2 | |- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> Z .<_ ( Y .\/ Z ) ) |
| 16 | 15 | 3adant3r1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z .<_ ( Y .\/ Z ) ) |
| 17 | simpr3 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B ) |
|
| 18 | 1 2 | lattr | |- ( ( K e. Lat /\ ( X e. B /\ Z e. B /\ ( Y .\/ Z ) e. B ) ) -> ( ( X .<_ Z /\ Z .<_ ( Y .\/ Z ) ) -> X .<_ ( Y .\/ Z ) ) ) |
| 19 | 6 7 17 10 18 | syl13anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Z /\ Z .<_ ( Y .\/ Z ) ) -> X .<_ ( Y .\/ Z ) ) ) |
| 20 | 16 19 | mpan2d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Z -> X .<_ ( Y .\/ Z ) ) ) |
| 21 | 20 | con3d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( -. X .<_ ( Y .\/ Z ) -> -. X .<_ Z ) ) |
| 22 | 14 21 | jcad | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( -. X .<_ ( Y .\/ Z ) -> ( -. X .<_ Y /\ -. X .<_ Z ) ) ) |
| 23 | 22 | 3impia | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ -. X .<_ ( Y .\/ Z ) ) -> ( -. X .<_ Y /\ -. X .<_ Z ) ) |