This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move indexed union inside an ordered-pair class abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015) Avoid ax-sep , ax-nul , ax-pr . (Revised by SN, 11-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunopab | |- U_ z e. A { <. x , y >. | ph } = { <. x , y >. | E. z e. A ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopabw | |- ( w e. _V -> ( w e. { <. x , y >. | ph } <-> E. x E. y ( w = <. x , y >. /\ ph ) ) ) |
|
| 2 | 1 | elv | |- ( w e. { <. x , y >. | ph } <-> E. x E. y ( w = <. x , y >. /\ ph ) ) |
| 3 | 2 | rexbii | |- ( E. z e. A w e. { <. x , y >. | ph } <-> E. z e. A E. x E. y ( w = <. x , y >. /\ ph ) ) |
| 4 | rexcom4 | |- ( E. z e. A E. x E. y ( w = <. x , y >. /\ ph ) <-> E. x E. z e. A E. y ( w = <. x , y >. /\ ph ) ) |
|
| 5 | rexcom4 | |- ( E. z e. A E. y ( w = <. x , y >. /\ ph ) <-> E. y E. z e. A ( w = <. x , y >. /\ ph ) ) |
|
| 6 | r19.42v | |- ( E. z e. A ( w = <. x , y >. /\ ph ) <-> ( w = <. x , y >. /\ E. z e. A ph ) ) |
|
| 7 | 6 | exbii | |- ( E. y E. z e. A ( w = <. x , y >. /\ ph ) <-> E. y ( w = <. x , y >. /\ E. z e. A ph ) ) |
| 8 | 5 7 | bitri | |- ( E. z e. A E. y ( w = <. x , y >. /\ ph ) <-> E. y ( w = <. x , y >. /\ E. z e. A ph ) ) |
| 9 | 8 | exbii | |- ( E. x E. z e. A E. y ( w = <. x , y >. /\ ph ) <-> E. x E. y ( w = <. x , y >. /\ E. z e. A ph ) ) |
| 10 | 4 9 | bitri | |- ( E. z e. A E. x E. y ( w = <. x , y >. /\ ph ) <-> E. x E. y ( w = <. x , y >. /\ E. z e. A ph ) ) |
| 11 | 3 10 | bitri | |- ( E. z e. A w e. { <. x , y >. | ph } <-> E. x E. y ( w = <. x , y >. /\ E. z e. A ph ) ) |
| 12 | 11 | abbii | |- { w | E. z e. A w e. { <. x , y >. | ph } } = { w | E. x E. y ( w = <. x , y >. /\ E. z e. A ph ) } |
| 13 | df-iun | |- U_ z e. A { <. x , y >. | ph } = { w | E. z e. A w e. { <. x , y >. | ph } } |
|
| 14 | df-opab | |- { <. x , y >. | E. z e. A ph } = { w | E. x E. y ( w = <. x , y >. /\ E. z e. A ph ) } |
|
| 15 | 12 13 14 | 3eqtr4i | |- U_ z e. A { <. x , y >. | ph } = { <. x , y >. | E. z e. A ph } |