This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a nonempty class in an indexed collection B ( x ) iff the indexed union of them is nonempty. (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunn0 | |- ( E. x e. A B =/= (/) <-> U_ x e. A B =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4 | |- ( E. x e. A E. y y e. B <-> E. y E. x e. A y e. B ) |
|
| 2 | eliun | |- ( y e. U_ x e. A B <-> E. x e. A y e. B ) |
|
| 3 | 2 | exbii | |- ( E. y y e. U_ x e. A B <-> E. y E. x e. A y e. B ) |
| 4 | 1 3 | bitr4i | |- ( E. x e. A E. y y e. B <-> E. y y e. U_ x e. A B ) |
| 5 | n0 | |- ( B =/= (/) <-> E. y y e. B ) |
|
| 6 | 5 | rexbii | |- ( E. x e. A B =/= (/) <-> E. x e. A E. y y e. B ) |
| 7 | n0 | |- ( U_ x e. A B =/= (/) <-> E. y y e. U_ x e. A B ) |
|
| 8 | 4 6 7 | 3bitr4i | |- ( E. x e. A B =/= (/) <-> U_ x e. A B =/= (/) ) |