This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer an integral using S.2 to an equivalent integral using S. . (Contributed by Mario Carneiro, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgitg2.1 | |- ( ( ph /\ x e. RR ) -> A e. RR ) |
|
| itgitg2.2 | |- ( ( ph /\ x e. RR ) -> 0 <_ A ) |
||
| itgitg2.3 | |- ( ph -> ( x e. RR |-> A ) e. L^1 ) |
||
| Assertion | itgitg2 | |- ( ph -> S. RR A _d x = ( S.2 ` ( x e. RR |-> A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgitg2.1 | |- ( ( ph /\ x e. RR ) -> A e. RR ) |
|
| 2 | itgitg2.2 | |- ( ( ph /\ x e. RR ) -> 0 <_ A ) |
|
| 3 | itgitg2.3 | |- ( ph -> ( x e. RR |-> A ) e. L^1 ) |
|
| 4 | 1 3 2 | itgposval | |- ( ph -> S. RR A _d x = ( S.2 ` ( x e. RR |-> if ( x e. RR , A , 0 ) ) ) ) |
| 5 | iftrue | |- ( x e. RR -> if ( x e. RR , A , 0 ) = A ) |
|
| 6 | 5 | mpteq2ia | |- ( x e. RR |-> if ( x e. RR , A , 0 ) ) = ( x e. RR |-> A ) |
| 7 | 6 | fveq2i | |- ( S.2 ` ( x e. RR |-> if ( x e. RR , A , 0 ) ) ) = ( S.2 ` ( x e. RR |-> A ) ) |
| 8 | 4 7 | eqtrdi | |- ( ph -> S. RR A _d x = ( S.2 ` ( x e. RR |-> A ) ) ) |