This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ist0.1 | |- X = U. J |
|
| Assertion | iscnrm | |- ( J e. CNrm <-> ( J e. Top /\ A. x e. ~P X ( J |`t x ) e. Nrm ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ist0.1 | |- X = U. J |
|
| 2 | unieq | |- ( j = J -> U. j = U. J ) |
|
| 3 | 2 1 | eqtr4di | |- ( j = J -> U. j = X ) |
| 4 | 3 | pweqd | |- ( j = J -> ~P U. j = ~P X ) |
| 5 | oveq1 | |- ( j = J -> ( j |`t x ) = ( J |`t x ) ) |
|
| 6 | 5 | eleq1d | |- ( j = J -> ( ( j |`t x ) e. Nrm <-> ( J |`t x ) e. Nrm ) ) |
| 7 | 4 6 | raleqbidv | |- ( j = J -> ( A. x e. ~P U. j ( j |`t x ) e. Nrm <-> A. x e. ~P X ( J |`t x ) e. Nrm ) ) |
| 8 | df-cnrm | |- CNrm = { j e. Top | A. x e. ~P U. j ( j |`t x ) e. Nrm } |
|
| 9 | 7 8 | elrab2 | |- ( J e. CNrm <-> ( J e. Top /\ A. x e. ~P X ( J |`t x ) e. Nrm ) ) |