This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Soundness justification theorem for df-iota . (Contributed by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotajust | |- U. { y | { x | ph } = { y } } = U. { z | { x | ph } = { z } } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | |- ( y = w -> { y } = { w } ) |
|
| 2 | 1 | eqeq2d | |- ( y = w -> ( { x | ph } = { y } <-> { x | ph } = { w } ) ) |
| 3 | 2 | cbvabv | |- { y | { x | ph } = { y } } = { w | { x | ph } = { w } } |
| 4 | sneq | |- ( w = z -> { w } = { z } ) |
|
| 5 | 4 | eqeq2d | |- ( w = z -> ( { x | ph } = { w } <-> { x | ph } = { z } ) ) |
| 6 | 5 | cbvabv | |- { w | { x | ph } = { w } } = { z | { x | ph } = { z } } |
| 7 | 3 6 | eqtri | |- { y | { x | ph } = { y } } = { z | { x | ph } = { z } } |
| 8 | 7 | unieqi | |- U. { y | { x | ph } = { y } } = U. { z | { x | ph } = { z } } |