This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Soundness justification theorem for df-in . (Contributed by Rodolfo Medina, 28-Apr-2010) (Proof shortened by Andrew Salmon, 9-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | injust | |- { x | ( x e. A /\ x e. B ) } = { y | ( y e. A /\ y e. B ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w | |- ( x = z -> ( x e. A <-> z e. A ) ) |
|
| 2 | eleq1w | |- ( x = z -> ( x e. B <-> z e. B ) ) |
|
| 3 | 1 2 | anbi12d | |- ( x = z -> ( ( x e. A /\ x e. B ) <-> ( z e. A /\ z e. B ) ) ) |
| 4 | 3 | cbvabv | |- { x | ( x e. A /\ x e. B ) } = { z | ( z e. A /\ z e. B ) } |
| 5 | eleq1w | |- ( z = y -> ( z e. A <-> y e. A ) ) |
|
| 6 | eleq1w | |- ( z = y -> ( z e. B <-> y e. B ) ) |
|
| 7 | 5 6 | anbi12d | |- ( z = y -> ( ( z e. A /\ z e. B ) <-> ( y e. A /\ y e. B ) ) ) |
| 8 | 7 | cbvabv | |- { z | ( z e. A /\ z e. B ) } = { y | ( y e. A /\ y e. B ) } |
| 9 | 4 8 | eqtri | |- { x | ( x e. A /\ x e. B ) } = { y | ( y e. A /\ y e. B ) } |