This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iineq2 | |- ( A. x e. A B = C -> |^|_ x e. A B = |^|_ x e. A C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | |- ( B = C -> ( y e. B <-> y e. C ) ) |
|
| 2 | 1 | ralimi | |- ( A. x e. A B = C -> A. x e. A ( y e. B <-> y e. C ) ) |
| 3 | ralbi | |- ( A. x e. A ( y e. B <-> y e. C ) -> ( A. x e. A y e. B <-> A. x e. A y e. C ) ) |
|
| 4 | 2 3 | syl | |- ( A. x e. A B = C -> ( A. x e. A y e. B <-> A. x e. A y e. C ) ) |
| 5 | 4 | abbidv | |- ( A. x e. A B = C -> { y | A. x e. A y e. B } = { y | A. x e. A y e. C } ) |
| 6 | df-iin | |- |^|_ x e. A B = { y | A. x e. A y e. B } |
|
| 7 | df-iin | |- |^|_ x e. A C = { y | A. x e. A y e. C } |
|
| 8 | 5 6 7 | 3eqtr4g | |- ( A. x e. A B = C -> |^|_ x e. A B = |^|_ x e. A C ) |