This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integrability of a complex function. (Contributed by Mario Carneiro, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iblcn.1 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
| Assertion | iblcn | |- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> ( Re ` B ) ) e. L^1 /\ ( x e. A |-> ( Im ` B ) ) e. L^1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iblcn.1 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
| 2 | 1 | ismbfcn2 | |- ( ph -> ( ( x e. A |-> B ) e. MblFn <-> ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( x e. A |-> ( Im ` B ) ) e. MblFn ) ) ) |
| 3 | 2 | anbi1d | |- ( ph -> ( ( ( x e. A |-> B ) e. MblFn /\ ( ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) <-> ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( x e. A |-> ( Im ` B ) ) e. MblFn ) /\ ( ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) ) ) |
| 4 | 3anass | |- ( ( ( x e. A |-> B ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) <-> ( ( x e. A |-> B ) e. MblFn /\ ( ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) ) |
|
| 5 | an4 | |- ( ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) /\ ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) <-> ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( x e. A |-> ( Im ` B ) ) e. MblFn ) /\ ( ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) ) |
|
| 6 | 3 4 5 | 3bitr4g | |- ( ph -> ( ( ( x e. A |-> B ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) <-> ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) /\ ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) ) ) |
| 7 | eqid | |- ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) |
|
| 8 | eqid | |- ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) |
|
| 9 | eqid | |- ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) |
|
| 10 | eqid | |- ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) |
|
| 11 | 7 8 9 10 1 | iblcnlem1 | |- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) ) |
| 12 | 1 | recld | |- ( ( ph /\ x e. A ) -> ( Re ` B ) e. RR ) |
| 13 | 12 | iblrelem | |- ( ph -> ( ( x e. A |-> ( Re ` B ) ) e. L^1 <-> ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) ) |
| 14 | 3anass | |- ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) <-> ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) ) |
|
| 15 | 13 14 | bitrdi | |- ( ph -> ( ( x e. A |-> ( Re ` B ) ) e. L^1 <-> ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) ) ) |
| 16 | 1 | imcld | |- ( ( ph /\ x e. A ) -> ( Im ` B ) e. RR ) |
| 17 | 16 | iblrelem | |- ( ph -> ( ( x e. A |-> ( Im ` B ) ) e. L^1 <-> ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) |
| 18 | 3anass | |- ( ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) <-> ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) |
|
| 19 | 17 18 | bitrdi | |- ( ph -> ( ( x e. A |-> ( Im ` B ) ) e. L^1 <-> ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) ) |
| 20 | 15 19 | anbi12d | |- ( ph -> ( ( ( x e. A |-> ( Re ` B ) ) e. L^1 /\ ( x e. A |-> ( Im ` B ) ) e. L^1 ) <-> ( ( ( x e. A |-> ( Re ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) e. RR ) ) /\ ( ( x e. A |-> ( Im ` B ) ) e. MblFn /\ ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) e. RR ) ) ) ) ) |
| 21 | 6 11 20 | 3bitr4d | |- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> ( Re ` B ) ) e. L^1 /\ ( x e. A |-> ( Im ` B ) ) e. L^1 ) ) ) |