This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for Hilbert space operator sum. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hods.1 | |- R : ~H --> ~H |
|
| hods.2 | |- S : ~H --> ~H |
||
| hods.3 | |- T : ~H --> ~H |
||
| Assertion | hocadddiri | |- ( ( R +op S ) o. T ) = ( ( R o. T ) +op ( S o. T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.1 | |- R : ~H --> ~H |
|
| 2 | hods.2 | |- S : ~H --> ~H |
|
| 3 | hods.3 | |- T : ~H --> ~H |
|
| 4 | 1 2 | hoaddcli | |- ( R +op S ) : ~H --> ~H |
| 5 | 4 3 | hocoi | |- ( x e. ~H -> ( ( ( R +op S ) o. T ) ` x ) = ( ( R +op S ) ` ( T ` x ) ) ) |
| 6 | 1 3 | hocofi | |- ( R o. T ) : ~H --> ~H |
| 7 | 2 3 | hocofi | |- ( S o. T ) : ~H --> ~H |
| 8 | hosval | |- ( ( ( R o. T ) : ~H --> ~H /\ ( S o. T ) : ~H --> ~H /\ x e. ~H ) -> ( ( ( R o. T ) +op ( S o. T ) ) ` x ) = ( ( ( R o. T ) ` x ) +h ( ( S o. T ) ` x ) ) ) |
|
| 9 | 6 7 8 | mp3an12 | |- ( x e. ~H -> ( ( ( R o. T ) +op ( S o. T ) ) ` x ) = ( ( ( R o. T ) ` x ) +h ( ( S o. T ) ` x ) ) ) |
| 10 | 3 | ffvelcdmi | |- ( x e. ~H -> ( T ` x ) e. ~H ) |
| 11 | hosval | |- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ ( T ` x ) e. ~H ) -> ( ( R +op S ) ` ( T ` x ) ) = ( ( R ` ( T ` x ) ) +h ( S ` ( T ` x ) ) ) ) |
|
| 12 | 1 2 11 | mp3an12 | |- ( ( T ` x ) e. ~H -> ( ( R +op S ) ` ( T ` x ) ) = ( ( R ` ( T ` x ) ) +h ( S ` ( T ` x ) ) ) ) |
| 13 | 10 12 | syl | |- ( x e. ~H -> ( ( R +op S ) ` ( T ` x ) ) = ( ( R ` ( T ` x ) ) +h ( S ` ( T ` x ) ) ) ) |
| 14 | 1 3 | hocoi | |- ( x e. ~H -> ( ( R o. T ) ` x ) = ( R ` ( T ` x ) ) ) |
| 15 | 2 3 | hocoi | |- ( x e. ~H -> ( ( S o. T ) ` x ) = ( S ` ( T ` x ) ) ) |
| 16 | 14 15 | oveq12d | |- ( x e. ~H -> ( ( ( R o. T ) ` x ) +h ( ( S o. T ) ` x ) ) = ( ( R ` ( T ` x ) ) +h ( S ` ( T ` x ) ) ) ) |
| 17 | 13 16 | eqtr4d | |- ( x e. ~H -> ( ( R +op S ) ` ( T ` x ) ) = ( ( ( R o. T ) ` x ) +h ( ( S o. T ) ` x ) ) ) |
| 18 | 9 17 | eqtr4d | |- ( x e. ~H -> ( ( ( R o. T ) +op ( S o. T ) ) ` x ) = ( ( R +op S ) ` ( T ` x ) ) ) |
| 19 | 5 18 | eqtr4d | |- ( x e. ~H -> ( ( ( R +op S ) o. T ) ` x ) = ( ( ( R o. T ) +op ( S o. T ) ) ` x ) ) |
| 20 | 19 | rgen | |- A. x e. ~H ( ( ( R +op S ) o. T ) ` x ) = ( ( ( R o. T ) +op ( S o. T ) ) ` x ) |
| 21 | 4 3 | hocofi | |- ( ( R +op S ) o. T ) : ~H --> ~H |
| 22 | 6 7 | hoaddcli | |- ( ( R o. T ) +op ( S o. T ) ) : ~H --> ~H |
| 23 | 21 22 | hoeqi | |- ( A. x e. ~H ( ( ( R +op S ) o. T ) ` x ) = ( ( ( R o. T ) +op ( S o. T ) ) ` x ) <-> ( ( R +op S ) o. T ) = ( ( R o. T ) +op ( S o. T ) ) ) |
| 24 | 20 23 | mpbi | |- ( ( R +op S ) o. T ) = ( ( R o. T ) +op ( S o. T ) ) |