This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of a Hilbert space sequence is unique. (Contributed by NM, 19-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hlimreui | |- ( E. x e. H F ~~>v x <-> E! x e. H F ~~>v x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlimuni | |- ( ( F ~~>v x /\ F ~~>v y ) -> x = y ) |
|
| 2 | 1 | rgen2w | |- A. x e. H A. y e. H ( ( F ~~>v x /\ F ~~>v y ) -> x = y ) |
| 3 | 2 | biantru | |- ( E. x e. H F ~~>v x <-> ( E. x e. H F ~~>v x /\ A. x e. H A. y e. H ( ( F ~~>v x /\ F ~~>v y ) -> x = y ) ) ) |
| 4 | breq2 | |- ( x = y -> ( F ~~>v x <-> F ~~>v y ) ) |
|
| 5 | 4 | reu4 | |- ( E! x e. H F ~~>v x <-> ( E. x e. H F ~~>v x /\ A. x e. H A. y e. H ( ( F ~~>v x /\ F ~~>v y ) -> x = y ) ) ) |
| 6 | 3 5 | bitr4i | |- ( E. x e. H F ~~>v x <-> E! x e. H F ~~>v x ) |