This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak version of hbal . Uses only Tarski's FOL axiom schemes. Unlike hbal , this theorem requires that x and y be distinct, i.e., not be bundled. (Contributed by NM, 19-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hbalw.1 | |- ( x = z -> ( ph <-> ps ) ) |
|
| hbalw.2 | |- ( ph -> A. x ph ) |
||
| Assertion | hbalw | |- ( A. y ph -> A. x A. y ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbalw.1 | |- ( x = z -> ( ph <-> ps ) ) |
|
| 2 | hbalw.2 | |- ( ph -> A. x ph ) |
|
| 3 | 2 | alimi | |- ( A. y ph -> A. y A. x ph ) |
| 4 | 1 | alcomimw | |- ( A. y A. x ph -> A. x A. y ph ) |
| 5 | 3 4 | syl | |- ( A. y ph -> A. x A. y ph ) |