This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak version of hba1 . See comments for ax10w . Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017) (Proof shortened by Wolf Lammen, 10-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hbn1w.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| Assertion | hba1w | |- ( A. x ph -> A. x A. x ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbn1w.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | 1 | cbvalvw | |- ( A. x ph <-> A. y ps ) |
| 3 | 2 | notbii | |- ( -. A. x ph <-> -. A. y ps ) |
| 4 | 3 | a1i | |- ( x = y -> ( -. A. x ph <-> -. A. y ps ) ) |
| 5 | 4 | spw | |- ( A. x -. A. x ph -> -. A. x ph ) |
| 6 | 5 | con2i | |- ( A. x ph -> -. A. x -. A. x ph ) |
| 7 | 4 | hbn1w | |- ( -. A. x -. A. x ph -> A. x -. A. x -. A. x ph ) |
| 8 | 1 | hbn1w | |- ( -. A. x ph -> A. x -. A. x ph ) |
| 9 | 8 | con1i | |- ( -. A. x -. A. x ph -> A. x ph ) |
| 10 | 9 | alimi | |- ( A. x -. A. x -. A. x ph -> A. x A. x ph ) |
| 11 | 6 7 10 | 3syl | |- ( A. x ph -> A. x A. x ph ) |