This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Combine two products into a single product over the cartesian product. (Contributed by Scott Fenton, 1-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodxp.1 | |- ( z = <. j , k >. -> D = C ) |
|
| fprodxp.2 | |- ( ph -> A e. Fin ) |
||
| fprodxp.3 | |- ( ph -> B e. Fin ) |
||
| fprodxp.4 | |- ( ( ph /\ ( j e. A /\ k e. B ) ) -> C e. CC ) |
||
| Assertion | fprodxp | |- ( ph -> prod_ j e. A prod_ k e. B C = prod_ z e. ( A X. B ) D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodxp.1 | |- ( z = <. j , k >. -> D = C ) |
|
| 2 | fprodxp.2 | |- ( ph -> A e. Fin ) |
|
| 3 | fprodxp.3 | |- ( ph -> B e. Fin ) |
|
| 4 | fprodxp.4 | |- ( ( ph /\ ( j e. A /\ k e. B ) ) -> C e. CC ) |
|
| 5 | 3 | adantr | |- ( ( ph /\ j e. A ) -> B e. Fin ) |
| 6 | 1 2 5 4 | fprod2d | |- ( ph -> prod_ j e. A prod_ k e. B C = prod_ z e. U_ j e. A ( { j } X. B ) D ) |
| 7 | iunxpconst | |- U_ j e. A ( { j } X. B ) = ( A X. B ) |
|
| 8 | 7 | prodeq1i | |- prod_ z e. U_ j e. A ( { j } X. B ) D = prod_ z e. ( A X. B ) D |
| 9 | 6 8 | eqtrdi | |- ( ph -> prod_ j e. A prod_ k e. B C = prod_ z e. ( A X. B ) D ) |