This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse images of the universal class _V under functions on the universal class _V are the universal class _V itself. (Proposed by Mario Carneiro, 7-Mar-2020.) (Contributed by AV, 7-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fncnvimaeqv | |- ( F Fn _V -> ( `' F " _V ) = _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fncnvima2 | |- ( F Fn _V -> ( `' F " _V ) = { y e. _V | ( F ` y ) e. _V } ) |
|
| 2 | fveq2 | |- ( y = x -> ( F ` y ) = ( F ` x ) ) |
|
| 3 | 2 | eleq1d | |- ( y = x -> ( ( F ` y ) e. _V <-> ( F ` x ) e. _V ) ) |
| 4 | 3 | elrab | |- ( x e. { y e. _V | ( F ` y ) e. _V } <-> ( x e. _V /\ ( F ` x ) e. _V ) ) |
| 5 | fvexd | |- ( F Fn _V -> ( F ` x ) e. _V ) |
|
| 6 | 5 | biantrud | |- ( F Fn _V -> ( x e. _V <-> ( x e. _V /\ ( F ` x ) e. _V ) ) ) |
| 7 | 4 6 | bitr4id | |- ( F Fn _V -> ( x e. { y e. _V | ( F ` y ) e. _V } <-> x e. _V ) ) |
| 8 | 7 | eqrdv | |- ( F Fn _V -> { y e. _V | ( F ` y ) e. _V } = _V ) |
| 9 | 1 8 | eqtrd | |- ( F Fn _V -> ( `' F " _V ) = _V ) |